Bases: composes.transformation.scaling.scaling.Scaling
Exponential Point-wise Mutual Information.
\(epmi(r,c) = \frac{P(r,c)}{P(r)P(c)}\)
Performs epmi weighting.
matrix_ (Matrix): Input matrix
Created on Oct 4, 2012
@author: georgianadinu
Bases: composes.transformation.scaling.scaling.Scaling
Normalizes the a space according to a some criterion.
Available criteria:
sum: Default. The result matrix \(X\) will satisfy: \(\sum_{i,j} X_{ij}=1\)
length: The result matrix \(X\) will satisfy: \(\sqrt{\sum_{i,j} X_{ij}^2}=1\)
Bases: composes.transformation.scaling.scaling.Scaling
Positive Local Mutual Information.
\(plmi(r,c)=ppmi(r,c)count(r,c)\)
Bases: composes.transformation.scaling.scaling.Scaling
Positive Log Weighting
\(plog(r,c)= log(r,c) \text{ if } log(r,c) \geq 0 \text{ else } 0\)
Bases: composes.transformation.scaling.scaling.Scaling
Positive Point-wise Mutual Information.
\(pmi(r,c) = log\frac{P(r,c)}{P(r)P(c)}\)
\(ppmi(r,c)= pmi(r,c) \text{ if } pmi(r,c)\geq 0 \text{ else } 0\)
Created on Oct 4, 2012
@author: georgianadinu
Bases: composes.transformation.scaling.scaling.Scaling
Normalizes the rows of a space according to a some criterion.
Available criteria:
length: Default. Each row \(X_i\) of the result matrix will satisfy: \(\sqrt{\sum_j X_{ij}^2}=1\)
sum: Each row \(X_i\) of the result matrix will satisfy: \(\sum_j X_{ij}=1\)